Efficient Intrusion Detection Using Principal Component Analysis

نویسندگان

  • Yacine Bouzida
  • Frédéric Cuppens
  • Nora Cuppens-Boulahia
  • Sylvain Gombault
چکیده

Most current intrusion detection systems are signature based ones or machine learning based methods. Despite the number of machine learning algorithms applied to KDD 99 cup, none of them have introduced a pre-model to reduce the huge information quantity present in the different KDD 99 datasets. We introduce a method that applies to the different datasets before performing any of the different machine learning algorithms applied to KDD 99 intrusion detection cup. This method enables us to significantly reduce the information quantity in the different datasets without loss of information. Our method is based on Principal Component Analysis (PCA). It works by projecting data elements onto a feature space, which is actually a vector space Rd , that spans the significant variations among known data elements. We present two well known algorithms we deal with, decision trees and nearest neighbor, and we show the contribution of our approach to alleviate the decision process. We rely on some experiments we perform over network records from the KDD 99 dataset, first by a direct application of these two algorithms on the rough data, second after projection of the different datasets on the new feature space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

The main essence of using statistical methods for outlier detection in anomaly-based approach lies in analyzing and mining information from raw data, to improve learning

Intrusion detection is an effective mechanism to deal with challenges in network security. The rapid development in networking technology has raised the need for an effective intrusion detection system (IDS) as traditional intrusion detection methods cannot compete against the newly advanced intrusion attacks. With increasing number of data being transmitted daily to/from a network, the system ...

متن کامل

Statistical Techniques in Anomaly Intrusion Detection System

In this paper, we analyze an anomaly based intrusion detection system (IDS) for outlier detection in hardware profile using statistical techniques: Chi-square distribution, Gaussian mixture distribution and Principal component analysis. Anomaly detection based methods can detect new intrusions but they suffer from false alarms. Host based Intrusion Detection Systems (HIDSs) use anomaly detectio...

متن کامل

S A PCA - AIS Approach for Intrusion Detection

Intrusion detection is now a significant part in computer and network security. Various intrusion detection approaches are presented to secure the network, but the performance of the system is reduced. Thus, to improve the detection rates and decrease false alarm rates in intrusion detection is important. The crux of an efficient intrusion detection system is its ability to differentiate betwee...

متن کامل

Intrusion Detection System using Fuzzy Logic

Intrusion detection plays an important role in today’s computer and communication technology. As such it is very important to design time efficient Intrusion Detection System (IDS) low in both, False Positive Rate (FPR) and False Negative Rate (FNR), but high in attack detection precision. To achieve that, this paper proposes IDS model based on Fuzzy Logic. Proposed model consists of three part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003